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Abstract This paper presents an efficient ear recognition technique which derives

benefits from the local features of the ear and attempt to handle the problems due to

pose, poor contrast, change in illumination and lack of registration. It uses (1) three

image enhancement techniques in parallel to neutralize the effect of poor contrast, noise

and illumination, (2) a local feature extraction technique (SURF) on enhanced images

to minimize the effect of pose variations and poor image registration. SURF feature

extraction is carried out on enhanced images to obtain three sets of local features,

one for each enhanced image. Three nearest neighbor classifiers are trained on these

three sets of features. Matching scores generated by all three classifiers are fused for

final decision. The technique has been evaluated on two public databases, namely IIT

Kanpur ear database and University of Notre Dame ear database (Collections E).

Experimental results confirm that the use of proposed fusion significantly improves the

recognition accuracy.

Keywords Biometrics · Ear Recognition · Image Enhancement · Fusion

1 Introduction

Biometrics deals with the recognition of a human using his or her inherent biometric

characteristics which may be of physiological or behavioural in nature. Few examples

of physiological biometrics are face, ear, iris, fingerprint, hand geometry, vein patterns,

palm print etc whereas behavioural biometrics include signature, voice, gait pattern,

key-strokes etc. There exists a number of systems developed based on these biometric

traits and tested in real world applications. Among the various physiological biometric

traits, ear has received much attention in recent years as it has been found to be a

reliable biometrics for human recognition [4].
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In [17], Iannarelli has proposed a manual ear based recognition system. This system

has used twelve features of the ear which are the distances between specific ear features

that are measured manually. It has used 10, 000 ear images to find the uniqueness

criteria between any two ears. It has suggested that ears may be distinguishable based

on limited number of characteristics and features. Analysis of the decidability index

also indicates the uniqueness of an individual ear where the decidability index of ear is

found to be an order of magnitude greater than that of face, but not as large as that

of iris. The characteristics making ear biometrics much popular are given below.

1. Ear is remarkably consistent and does not change its shape under different expres-

sions like face. Moreover, ear has uniform color distribution.

2. Changes in the ear shape happen only before the age of 8 years and after that of

70 years [17]. Shape of the ear is very much stable for the rest of the life.

3. Like face, handling background is a challenging issue and often it requires data to

be captured under controlled environment. However, in case of ear, background is

predictable as an ear always remains fixed at the middle of the side face.

4. Size of the ear is larger than fingerprint, iris, retina etc. and smaller than face, and

hence ear can be acquired easily.

5. Ear is a good example of passive biometrics and does not need much cooperation

from user. Ear data can be captured even without the knowledge of the users from

the far distance.

A biometric based security system is expected to fulfill user’s demand such as

low error rates, high security levels, testing for liveliness of the subject, possibility

of fake detection etc. Even though the recognition performance of biometric systems

has been significantly improved in recent past, there is a need of further improvement

of existing techniques. Most of the existing ear recognition techniques have failed to

perform satisfactorily in presence of varying illumination, occlusion and poor image

registration. This paper proposes an efficient ear based recognition technique which

can handle some of these factors. In this proposed technique, an ear image is enhanced

using three image enhancement techniques applied in parallel. SURF feature extractor

is used on each enhanced image to extract local features. A multi-matcher system is

trained to combine the information extracted from each enhanced image. The technique

is found to be robust to illumination changes and works well even when ear images are

not properly registered.

The use of multiple image enhancement techniques has made it possible to counter-

act the effect of illumination and poor contrast while SURF based local feature helps

in matching the images which are not properly registered and suffer from pose varia-

tions. For a given ear image, three enhanced images are obtained which are used by

SURF feature extractor to generate three sets of SURF features for an ear image. Three

nearest neighbor classifiers are respectively trained on these three sets of features and

finally the output of all the classifiers are fused to get the final result. Experimental

results show an improvement in performance compared to existing techniques. This

paper also observes the advantage of use of multiple enhancement algorithms.

The rest of the paper is organized in the following way. Section 2 reviews some of the

well known techniques available for ear recognition. Section 3 discusses SURF feature

extractor and various enhancement techniques used in the proposed technique. Next

section presents the technique for ear recognition. Experimental results are analyzed

in Section 5. The paper is concluded in the last section.
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2 Literature Review

Most of the well known techniques for 2D ear recognition can be divided into three

types: Appearance Based techniques, Force Field Transformation based techniques and

Geometric techniques. Appearance based techniques use either global or local appear-

ance of the ear image for recognition. Techniques based on Principal Component Anal-

ysis (PCA) [8], Independent Component Analysis (ICA [26]), intensity and color space

[20,21] etc. fall under this category. PCA based technique is the extension of the use

of PCA in face recognition. It exploits the training data to find out a set of orthogonal

basis vectors representing the directions of maximum variance in the data with mini-

mum reconstruction mean square error. Usually, it drops the first eigenvector assuming

that it represents the illumination changes in the image. Zhang et. al. [26] have used

ICA for ear recognition which performs better than PCA. However, authors have not

dropped the first eigenvector while comparing the results. Major drawback of this type

of techniques is that they are only usable when images are captured in control environ-

ment and properly registered. Nanni and Lumini [20] have proposed a multi-matcher

based technique for ear recognition which exploits appearance based local properties

of an ear. It considers overlapping sub-windows to extract local features using bank

of Gabor filters. Further Laplacian Eigen Maps are used to reduce the dimensionality

of the feature vectors. Ear is represented using the features obtained from a set of

most discriminative sub-windows selected using Sequential Forward Floating Selection

(SFFS) algorithm. Matching in this technique is performed by combining the outputs

of several 1-nearest neighbor classifiers constructed on different sub-windows. Another

technique based on fusion of color spaces is proposed by Nanni and Lumini [21] where

few color spaces are selected using SFFS algorithm and Gabor features are extracted

from them. Matching is carried out by combining the output of several nearest neighbor

classifiers constructed on different color components.

Force field based techniques [15,13,16] transform an ear image into a force field and

extract features using force field energy functionals discussed in [14]. To transform an

image into force field, an image is considered as an array of mutually attracting particles

that act as a source of Gaussian force field. Underlying the force field, there exists a

scalar potential energy field which, in case of an ear, appears as a smooth surface

that looks like a small mountain with a number of peaks joined by ridges. Force field

based techniques consider these peaks and ridges as features for ear representation.

The directional properties of the force field are utilized to identify the extrema of a

small number of potential energy wells and associated potential channels.

Burge and Burger [5,6] have proposed a technique for ear recognition using geomet-

ric information of the ear. The ear has been represented using a neighborhood graph

obtained from a Voronoi diagram of the ear edge segments whereas template compar-

ison has been performed using sub-graph matching. Choras [9,10] has used geometric

properties of the ear to propose an ear recognition technique in which feature extrac-

tion is carried out in two steps. In the first step, global features are extracted whereas

second step extracts local features. While matching, local features are only used when

global features are found to be matching. In another geometry based technique pro-

posed by Shailaja and Gupta [23], an ear is represented by two sets of features, global

and local, obtained using outer and inner ear edges respectively. Two ears in this tech-

nique are declared similar if they are matched with respect to both the feature sets.

The technique proposed in [7] has treated ear as a planar surface and has created a

homography transform using SIFT [19] feature points to register ears accurately. It has
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achieved robust results in presence of background clutter, viewing angle and occlusion.

In [25], Yuan et al. have proposed a technique for human recognition with partially

occluded ear images using neighborhood preserving embedding. Marsico et al. in [11]

have proposed a fractal based technique to classify human ears. The technique adopts

feature extraction locally, so that the system gets robust with respect to small changes

in pose/illumination and partial occlusions.

3 Preliminaries

3.1 Speeded Up Robust Feature Transform

Speeded-Up Robust Features (SURF)[3,2] is a rotation-invariant interest point detector

and descriptor. It has been designed for extracting highly distinctive and invariant

feature points from images. It is found to be more robust with view point, scale and

illumination changes and occlusion. It identifies salient feature points in the image

called key-points. It makes use of hessian matrix for key-point detection. For a given

point P (x, y) in an image I, the hessian matrix H(P, σ) at scale σ is defined as:

H(P, σ) =




Lxx(P, σ) Lxy(P, σ)

Lyx(P, σ) Lyy(P, σ)




where Lxx(P, σ), Lxy(P, σ), Lyx(P, σ) and Lyy(P, σ) are the convolution of the Gaus-

sian second order derivatives ∂2

∂x2 g(σ), ∂2

∂x∂y g(σ), ∂2

∂y∂xg(σ) and ∂2

∂y2 g(σ) with the im-

age I at point P respectively. To speed up the computation, second order Gaussian

derivatives in Hessian matrix are approximated using box filters. To detect key-points

at different scales, scale space representation of the image is obtained by convolving it

with the box filters. The scale space is analysed by up-scaling the filter size rather than

iteratively reducing the image size. In order to localize interest points in the image and

over scales, non-maximum suppression in a 3× 3× 3 neighborhood is implemented.

In order to generate key point descriptor vector, a circular region is considered

around the detected key-points and Haar wavelet responses dx and dy in horizontal

and vertical directions are computed. These responses are used to obtain the dominant

orientation in the circular region. Feature vectors are measured relative to the dominant

orientation resulting the generated vectors invariant to image rotation. Also a square

region around each key-point is considered and it is aligned along the dominant orien-

tation. The square region is divided into 4× 4 sub-regions and Haar wavelet responses

are computed for each sub-region. The sum of the wavelet responses in horizontal and

vertical directions for each sub-region are used as feature values. In addition, the ab-

solute values of responses are summed to obtain the information about the polarity of

the image intensity changes. Thus, the feature vector Vi for ith sub-region is given by

Vi = {Σdx, Σdy, Σ|dx|, Σ|dy|}

SURF feature vector of a key-point is obtained by concatenating feature vectors

(Vi) from all sixteen sub-regions around the key-point resulting a vector of 64 elements.

Extended version of SURF (known as SURF-128), which is more distinctive, adds

couple of similar features. It uses the sums same as described above, but splits these

values up further. The sum of dx and of |dx| are computed separately for dy < 0 and
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(a) (b) (c) (d)

Fig. 1 Image enhancement examples: (a) Original image from UND-E dataset, output after
applying (b) ADHist, (c) NLM and (d) SF enhancement techniques

dy ≥ 0. Similarly, the sum of dy and of |dy| are found according to the sign of dx,

hence doubling the number of features. The proposed ear recognition technique uses

SURF-128 (referred as only SURF in further discussion) for feature representation.

Matching in SURF is performed using nearest neighbor ratio matching. The best

candidate match for a keypoint in an image is found by identifying its nearest neigh-

bor in the keypoints from the test image where nearest neighbors are defined as the

keypoints with minimum Euclidean distance from the given descriptor vector. The

probability that a match is correct is determined by computing the ratio of distance

from the closest neighbor to the distance of the second closest. All matches in which

the distance ratio is greater than a threshold (τ) are rejected.

3.2 Image Enhancement

This subsection describes three image enhancement techniques, namely Adaptive His-

togram Equalization, Steerable Gaussian Filter and Non-Local Means Filter that are

used in the proposed technique for enhancing the ear images.

3.2.1 Adaptive Histogram Equalization

Adaptive histogram equalization (ADHist) [27] can be used to improve the contrast of

an image. It divides an image into multiple non-overlapping tiles (regions) and performs

histogram equalization for each one individually. This enhances the contrast of each tile.

The neighboring tiles are combined together to get the entire enhanced image. ADHist

uses bilinear interpolation to remove artificially induced boundaries while combining

the tiles. Adaptive histogram equalization is capable of improving the local contrast of

the image and bringing out more details in the image.

Let I ∈ Ra×b be the image of size a× b to be enhanced. It is divided into the tiles

of size α×β, when α < a and β < b. These tiles are enhanced individually and stitched

together to get the overall enhanced image. Selection of appropriate values for α and

β greatly affects the enhancement performance. In this paper, these values are chosen

empirically. Figure 1(b) shows the enhanced image obtained using ADHist.

3.2.2 Non-Local Means Filter

The non-local means (NLM) algorithm [24] is proposed for image enhancement by

using image denoising. It considers pixel values from the entire image for the task of
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noise reduction. The algorithm is based on the fact that for every small window of the

image, several similar windows can be found in the image and all of these windows can

be exploited to denoise the image. Let the noisy image be denoted by In(p) ∈ Ra×b,

where a and b are image dimensions and let p = (x, y) stand for an arbitrary pixel

location within the noisy image. The NLM algorithm constructs the denoised image

Id(p) by computing each pixel value of Id(p) as a weighted average of pixels comprising

In(p), i.e.:

Id(p) =
∑

p∈In(p)

w(z, p)In(p)

where w(z, p) represents the weighting function which measures the similarity between

the local neighborhoods of the pixel at the spatial locations z and p. The weighting

function used in this equation is defined as follows:

w(z, p) =
1

Z(z)
e−

Gσ‖In(Ωp)−In(Ωz))‖22
h2

where, Z(z) =
∑

p∈In(p)

e−
Gσ‖In(Ωp)−In(Ωz))‖22

h2

where Gσ denotes a Gaussian kernel with standard deviation σ, Ωp and Ωz are the

local neighborhoods of the pixels at the locations p and z respectively, h stands for the

parameter that controls the decay of the exponential function and Z(z) represents a

normalizing factor. It can be observed that if the local neighborhoods of a given pair

of pixel locations z and p display a high degree of similarity, the pixels at z and p can

be assigned relatively large weights at the time of computing their denoised estimates.

A proper selection of the neighborhood size N and decay parameter h results in a

smoothed image with preserved edges. Hence, it can be used to estimate the luminance

of an input image and consequently, to compute the (logarithmic) reflectance. An

example of the deployment of the NLM algorithm (for a 3× 3 local neighborhood and

h = 50) for estimation of the logarithmic reflectance is shown in Figure 1(c).

3.2.3 Steerable Filter

Steerable Filter (SF) [12] provides an efficient architecture to synthesize filters of arbi-

trary orientations from linear combinations of basis filters. This allows one to adaptively

“steer” a filter to any orientation and to determine analytically the filter output as a

function of orientation. These filters are normally used for early vision and image pro-

cessing tasks such as angularly adaptive filtering, shape-from-shading, edge detection

etc. However, they can also be used to produce illumination invariant representation

of an image, such as the gradient image. For example, Gaussian function can be used

as the basis filters to obtain steerable filters. To get illumination invariant represen-

tation of an image, steerable Gaussian derivatives can be applied at multiple scales

and orientations to an image. Output image is computed by taking the weighted linear

combination of the filtered images obtained after applying the Gaussian derivatives of

various scales and orientation to the input image.

There are two critical parameters used to define steerable filters based on Gaussian

function: one is σ to define the scale of the filter and another is θ to define the orientation

of the filter. To define the Gaussian functions at multiple scales, a set of σ and θ values

are required. Let these values be {σ1, σ2, .., σl} and {θ1, θ2, .., θn}. Each pair of (σi, θj)
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Fig. 2 Block diagram of the proposed ear recognition technique

defines one basis filter. Angular spacing of the filters is usually taken equal, hence n

values of θ define n angles equally drawn from 0 to 1800. The choice of values of σ

and n depends on the size and content of the image respectively. An example of image

enhancement of the image shown in Figure 1(a) using SF technique is given in Figure

1(d). It gives illumination normalized image.

4 Proposed Technique

The proposed ear recognition system follows three major steps: Image Enhancement,

Feature Extraction and Classification and Fusion. Overview of the proposed system is

shown in Figure 2. Various steps of the proposed system have been discussed in the

following subsections.

4.1 Image Enhancement

This step involves three image enhancement techniques and is intended to enhance

the contrast of the ear image and to normalize the effect of illumination and shadow.

The purpose of enhancement is to get the correct SURF feature descriptor vectors for a

feature points and to help in establishing the correct point correspondence between the

feature points in two images. For example, a particular feature point in two different

images of the same subject (which are differently illuminated) may get two different

SURF descriptor vectors in the absence of enhancement. But when enhancement is

applied, descriptor vectors for corresponding points in two images are found to be very

similar.

The enhancement algorithms presented in Section 3.2 have been used in parallel on

each input ear image to get enhanced image which are later used for feature extraction.

4.2 Feature Extraction

This step uses SURF technique for feature extraction which provides representation

of an image in terms of a set of salient feature points, each point associated with a

descriptor vector of 128 feature elements. SURF features are efficiently able to capture

the properties of spatial localization, change in 3D viewpoint, orientation and scale
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sensitivity. It provides highly distinctive features, in the sense that a single feature can

be correctly matched with high probability against a large database of features from

many images.

A technique for feature level fusion is proposed to obtain a fused representative

template for a subject by combining the features of multiple training samples of the

subject. If n samples of a subject are provided for training, a representative feature

template for the subject is obtained by fusing the feature points together and by

considering the redundant feature points only once. Let n biometric feature templates

of a subject used for training be represented by F1, F2, .., Fn. A fused biometric feature

template Ffused is obtained as follows:

Ffused = F1 ∪ F2 ∪ ... ∪ Fn

where the cardinality of set Ffused provides the number of feature points present in the

fused template. Fusion of the templates is done incrementally where first two feature

templates F1 and F2 are fused to generate a new template T which is fused with

feature template F3. This procedure is continued until all the feature templates are

fused together. While fusing two biometric templates Fi and Fi+1, SURF matching

is applied between the templates to find out the redundant points. If a feature point

in a template matches to a feature point in the another template, it is considered as

common to both and is used only once in fusion.

4.3 Classification and Fusion

Extracted features obtained from each enhanced image are used for classification to

train a nearest neighbor classifier. The matching strategy in the nearest neighbor classi-

fier is as follows. An interest point in the test image is compared to an interest point in

the reference template by calculating the Euclidean distance between their descriptor

vectors. Matching of two feature points is carried out using the nearest neighbor ratio

matching strategy where a matching pair is detected if its distance is closer than τ

times of the distance of the second nearest neighbor where τ is the matching threshold.

Matching score between two ear images is obtained based on the number of matched

feature points between two images. These matching scores are normalized using min-

max normalization technique and are then fused using weighted sum rule. Final clas-

sification decision is taken by using the fused scores.

5 Experimental Results

The performance of a biometric system can be measured in terms of recognition accu-

racy, equal error rate (EER) and error under ROC curves (EUC ). Recognition accuracy

is used in verification system and is defined as 100 − (FAR+FRR)
2 where FAR (False

Acceptance Rate) indicates the rate at which an imposter is incorrectly accepted as

genuine person and FRR (False Rejection Rate) is the rate at which a genuine person is

incorrectly rejected as an imposter. EER is defined as the rate at which both FAR and

FRR errors are equal. The performance of a verification system can also be evaluated

using a receiver operator characteristic (ROC ) curve, which graphically demonstrates

the changes of GAR (Genuine Acceptance Rate, defined as 100 - FRR) with changes

in FAR.
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(a) Data Set 1 (a) Data Set 2

Fig. 3 Few sample images from IITK data sets

(a) Subject ID: 04202 (b) Subject ID: 04217 (c) Subject ID: 04295

Fig. 4 Few sample images from UND-E database

5.1 Databases

Experiments are conducted on two databases, namely IIT Kanpur database and Uni-

versity of Notre Dame database (Collections E) [1]. Table 1 provides the summary of

these databases.

5.1.1 IIT Kanpur Database

IIT Kanpur (IITK) database is composed of two data sets. Data Set 1 contains 801 side

face images collected from 190 subjects. Number of images acquired from an individual

varies from 2 to 10. Figure 3(a) shows few sample images from Data Set 1. Data Set

2 consists of 801 side face images collected from 89 individuals. For each subject, 9

images are captured by considering three rotations and three scales for each rotation.

Images of Data Set 2 consist of frontal view of the ears captured at three positions,

first when person is looking straight, second when he/she is looking approximately 200

down and third when he/she is looking approximately 200 up. At all these positions,

images are captured at 3 different scales by positioning the camera at a distance of

approximately 1 meter and setting up the digital zoom of the camera at 1.7x, 2.6x and

3.3x. Figure 3(b) shows 9 images from Data Set 2 for an individual. The purpose of

the use of multiple data sets is to show the robustness of the proposed approach. IITK
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Table 1 Summary of the databases used in experimentation

Database
Number of Total

Description
Subjects Samples

IITK Data Set 1 190 801
2-10 samples per subject, frontal ear
images

IITK Data Set 2 89 801
9 samples per subject, frontal ear im-
ages affected by scaling, rotation and
poor registration

UND Dataset (Col-
lection E)

114 464
3-9 samples per subject, images af-
fected by illumination and pose vari-
ations, poor contrast and registration

Data Set 1 provides frontal ear images while IITK Data Set 2 provides challenging

images which are affected by scaling and rotation.

5.1.2 University of Notre Dame Database

University of Notre Dame database, Collection E (UND-E) consists of 464 side face

images collected from 114 subjects, 3 to 9 samples per subject. The images are collected

on different days with different conditions of pose and illumination. Some of the sample

ear images from UND-E database are shown in Figure 4. It can be noted that there is

a huge intra-class variation present in these images due to pose variation and different

imaging conditions.

5.1.3 Ear Extraction from the Background

IITK and UND-E databases contain side face images of human subjects. These ears

are segmented from the side face images using ear segmentation technique discussed in

[22]. Manual segmentation is performed for the images (≈ 4%) where [22] is found to

be deficient to segment the ears.

5.2 Parameters Tuning

Selection of appropriate values of parameters is critical for achieving the best perfor-

mance of the proposed technique. Main parameters which have great impact on the

performance are dimensions of the tiles in ADHist, values of σ and n in SF, values of

h and N in NLM and value of τ in SURF Matching.

Since it is difficult to test the proposed technique for all possible values of these

6 parameters, the parameters are tuned for optimal values heuristically and the best

performance is obtained. To achieve optimal values of parameters, a set of 25 subjects

is randomly selected from each database and parameter tuning is performed only on

this set. These parameters are used for testing the full database.

5.2.1 Dimensions of the Tile for ADHist

The proposed technique considers the tiles of square size, i.e. α = β in ADHist tech-

nique. Dimensions of the tiles are varied from 2 × 2 to 20 × 20 and for each value,



11

Table 2 Computation of optimal dimensions of the tile in ADHist for IITK database

(a) IITK Data Set 1

SURF Matching Threshold (τ)
Tile 0.3 0.4 0.5 0.6 0.7
Size EER EUC EER EUC EER EUC EER EUC EER EUC

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

2× 2 3.49 2.58 3.60 1.90 5.47 1.99 8.37 2.85 12.40 5.78
4× 4 3.51 2.01 3.50 1.25 5.07 1.33 7.89 2.31 12.21 5.41
6× 6 3.48 1.95 3.50 1.17 4.19 1.10 7.25 2.01 12.23 4.84
8× 8 3.54 3.03 3.46 1.42 5.23 1.58 8.44 2.52 12.54 5.36

10× 10 4.56 4.10 4.15 2.61 5.73 2.23 8.53 3.01 12.25 5.70
12× 12 8.49 8.62 6.11 5.55 6.64 3.84 9.87 4.55 14.05 7.11
14× 14 9.91 9.98 5.93 5.23 7.05 4.31 10.31 4.87 14.39 7.46
16× 16 9.64 9.70 6.40 5.51 7.52 4.48 10.61 4.80 15.11 8.09
18× 18 8.82 8.77 6.68 5.36 7.02 3.99 10.46 4.84 15.12 8.17
20× 20 10.63 10.70 7.34 6.27 7.37 4.50 10.56 5.01 15.52 8.23

(b) IITK Data Set 2

SURF Matching Threshold (τ)
Tile 0.3 0.4 0.5 0.6 0.7
Size EER EUC EER EUC EER EUC EER EUC EER EUC

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

2× 2 2.68 1.76 2.43 1.04 3.87 0.89 7.61 2.12 14.89 6.7
4× 4 2.66 2.06 2.25 1.03 4.03 1.07 7.23 2.14 13.89 6.1
6× 6 3.06 2.64 3.32 1.12 3.84 1.02 6.43 2.01 12.88 5.75
8× 8 3.42 3.1 4.38 1.93 5.21 1.51 7.58 2.42 14.32 6.39

10× 10 4.92 4.55 4.27 1.96 5.52 2.01 8.84 2.83 14.97 6.71
12× 12 7.08 6.73 6.01 3.76 6.51 2.72 9.6 3.8 16.15 7.84
14× 14 9.64 9.34 6.73 4.63 7.25 2.98 11.46 4.27 17.61 8.84
16× 16 11.43 11.15 7.47 5.56 8.64 3.71 11.86 4.85 18.87 9.7
18× 18 12.04 11.83 8.11 6.50 9.77 4.94 12.72 5.82 20.47 10.82
20× 20 13.33 13.15 9.34 7.99 11.12 6.10 13.54 6.70 21.09 11.12

Table 3 Computation of optimal dimensions of the tile in ADHist for UND-E database

SURF Matching Threshold (τ)
Tile 0.3 0.4 0.5 0.6 0.7
Size EER EUC EER EUC EER EUC EER EUC EER EUC

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

2× 2 11.75 6.73 9.97 3.93 8.83 3.53 9.47 3.63 11.44 4.4
4× 4 15.14 8.37 10.42 4.71 10.11 3.12 9.57 3.22 11.5 4.08
6× 6 13.27 7.05 9.62 3.9 9.47 3.71 9.78 3.53 10.73 3.94
8× 8 13.2 7.93 9.34 4.21 8.68 3.04 8.14 2.48 9.63 3.26

10× 10 13.88 9.33 9.66 4.19 8.1 2.71 8.46 2.60 10.00 3.38
12× 12 12.81 8.48 10.48 4.82 8.20 2.53 7.24 2.18 8.03 2.89
14× 14 13.00 9.24 10.78 4.87 8.31 3.16 8.06 2.74 8.15 2.36
16× 16 12.98 9.55 10.51 3.99 8.07 2.88 6.72 2.40 8.39 2.41
18× 18 17.91 10.69 13.05 5.16 10.14 3.26 8.2 2.67 8.67 2.65
20× 20 13.2 10.01 10.32 4.02 7.96 2.57 7.33 2.12 7.26 2.22
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Table 4 Computation of optimal values of h and N in NLM filters for IITK database

(a) IITK Data Set 1

h N

SURF Matching Threshold (τ)
0.3 0.4 0.5 0.6 0.7

EER EUC EER EUC EER EUC EER EUC EER EUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

20
4 11.31 11.42 5.63 5.63 4.52 3.85 5.64 2.95 8.99 3.86
5 16.60 16.79 9.78 9.90 6.31 6.20 6.54 4.90 9.34 4.53
6 29.21 29.48 20.17 20.50 14.34 14.67 11.92 12.13 11.16 9.94

50
4 5.16 5.01 3.97 2.86 5.21 1.97 7.61 2.34 11.47 4.81
5 5.33 5.28 4.31 3.32 4.30 1.92 6.51 2.18 10.98 4.51
6 5.33 5.33 3.80 3.08 4.36 2.37 6.27 2.21 10.77 4.21

80
4 3.36 2.77 2.99 1.32 4.52 1.07 7.79 2.06 12.64 4.98
5 3.46 2.93 3.25 1.51 4.80 1.07 7.69 2.05 12.32 4.99
6 4.95 4.75 3.30 2.21 4.36 1.54 7.34 2.26 12.11 4.93

100
4 3.48 2.82 3.12 1.43 4.94 1.30 7.54 2.18 12.83 5.26
5 3.40 2.80 3.03 1.44 4.77 1.25 7.93 2.10 12.76 5.15
6 3.54 2.99 2.90 1.17 4.78 1.14 7.57 2.01 12.24 4.93

(b) IITK Data Set 2

h N

SURF Matching Threshold (τ)
0.3 0.4 0.5 0.6 0.7

EER EUC EER EUC EER EUC EER EUC EER EUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

20
4 22.01 22.01 11.41 11.37 6.38 5.92 6.87 4.01 10.52 4.39
5 28.05 28.05 17.41 17.40 10.42 10.35 7.64 6.75 11.40 5.79
6 34.10 34.10 21.88 21.88 13.46 13.43 8.64 8.20 11.13 7.03

50
4 4.35 4.04 4.41 2.37 5.24 1.26 8.00 2.38 13.99 5.91
5 5.02 4.84 3.90 2.24 4.76 1.41 7.29 1.98 12.74 5.31
6 5.76 5.67 3.48 2.32 4.49 1.12 6.85 1.86 12.29 4.83

80
4 3.72 3.27 3.98 1.60 4.40 1.34 7.31 2.30 14.45 6.11
5 3.88 3.46 4.08 1.67 4.42 0.94 7.37 2.12 14.23 6.01
6 3.95 3.59 3.95 1.80 4.35 1.19 7.44 2.08 13.71 5.78

100
4 3.86 3.36 4.11 1.62 4.26 1.33 7.63 2.18 14.07 6.05
5 3.89 3.44 3.71 1.54 4.64 1.29 7.35 2.14 14.01 6.07
6 3.74 3.30 4.08 1.73 4.49 1.26 7.32 2.25 13.60 5.89

Table 5 Computation of optimal values of h and N in NLM filters for UND-E database

h N

SURF Matching Threshold (τ)
0.3 0.4 0.5 0.6 0.7

EER EUC EER EUC EER EUC EER EUC EER EUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

20
4 20.85 20.84 11.07 10.82 9.11 6.65 8.02 3.1 7.12 2.27
5 21.75 21.74 11.68 11.61 8.54 7.51 7.63 4.29 7.77 2.84
6 27.05 27.05 13.78 13.75 9.00 8.58 8.67 4.40 7.77 2.72

50
4 10.55 10.07 9.85 5.14 7.31 2.63 5.80 1.83 5.97 1.76
5 11.77 11.58 8.96 6.29 7.52 2.92 6.22 1.90 5.79 1.55
6 13.42 13.34 8.62 7.21 6.59 3.7 5.79 1.81 5.75 1.40

80
4 9.47 7.44 8.22 3.30 7.07 2.54 5.87 1.62 5.89 1.64
5 12.46 9.4 10.09 4.62 7.85 2.5 5.84 1.86 5.89 1.58
6 12.81 10.13 9.63 4.75 7.27 2.53 5.85 1.48 5.83 1.33

100
4 12.71 7.86 10.87 4.46 8.49 2.88 5.89 1.78 6.21 1.68
5 10.31 8.03 8.09 3.26 6.83 2.30 5.99 1.94 5.90 1.56
6 10.91 9.25 7.31 3.87 6.13 2.35 5.85 1.47 5.85 1.50
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Table 6 Computation of optimal values of σ and n in SF for IITK and UND-E databases

(a) IITK Data Set 1

σ n

SURF Matching Threshold (τ)
0.3 0.4 0.5 0.6 0.7

EER EUC EER EUC EER EUC EER EUC EER EUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

{0.5, 1, 4 3.50 1.76 3.52 1.27 4.04 1.34 6.67 1.99 11.45 4.46
1.5,2, 6 3.48 2.95 3.60 2.07 5.23 2.02 7.17 2.59 12.44 5.16
2.5} 8 3.50 1.63 3.46 0.98 4.85 1.32 7.36 2.25 12.47 5.19
{0.1,1, 4 3.51 2.07 3.52 1.52 4.28 1.51 6.83 2.10 12.11 5.02

2,3 6 3.53 2.02 3.60 1.42 4.94 1.64 7.76 2.51 12.61 5.45
4} 8 3.56 1.84 3.58 1.25 5.02 1.46 7.31 2.46 12.97 5.75

(b) IITK Data Set 2

σ n

SURF Matching Threshold (τ)
0.3 0.4 0.5 0.6 0.7

EER EUC EER EUC EER EUC EER EUC EER EUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

{0.5, 1 4 3.83 3.02 4.25 1.63 4.77 1.54 7.43 2.68 13.57 6.07
1.5, 2 6 4.11 3.23 3.86 1.54 5.01 1.49 7.34 2.68 13.77 6.17
2.5} 8 3.30 2.16 4.00 1.19 5.02 1.34 8.02 2.61 14.33 6.47
{0.1,1 4 4.26 3.42 3.74 1.35 4.51 1.48 7.96 2.86 14.60 6.68
2,3 6 3.60 2.76 3.28 1.15 4.77 1.34 7.99 2.64 15.06 6.83
4} 8 3.45 2.61 3.28 1.11 4.58 1.29 8.00 2.75 14.21 6.59

(c) UND-E Database

σ n

SURF Matching Threshold (τ)
0.3 0.4 0.5 0.6 0.7

EER EUC EER EUC EER EUC EER EUC EER EUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

{0.5, 1 4 12.92 9.69 10.64 5.05 9.28 3.62 8.92 3.17 8.18 2.72
1.5, 2 6 12.27 6.96 10.04 3.53 7.41 2.65 6.83 2.25 6.53 2.13
2.5} 8 12.41 7.37 9.15 3.5 7.1 1.79 6.51 1.67 6.61 1.72
{0.1,1 4 13.71 7.47 10.68 4.66 9.83 3.9 9.24 3.41 9.66 4.07
2,3 6 13.39 7.55 10.37 4.29 8.75 3.06 8.02 2.71 8.23 2.8
4} 8 14.45 7.62 10.45 4.6 8.01 2.73 8.02 2.48 7.62 2.63

EER and EUC of the system are computed when only ADHist is used for image en-

hancement. The tile size which corresponds to minimum EER is chosen as the optimal

size. Also if two tile sizes give same EER, their corresponding EUC values are used

to break the tie and the tile size for which less EUC is obtained, is considered as the

optimum tile size. Experiments are conducted to find EER and EUC for IITK and

UND-E databases which are shown in Table 2 and Table 3 respectively. It can be ob-

served from the tables that the optimal values of tile size for IITK database Set 1 and

Set 2 are 8× 8 and 4× 4 respectively while that for UND-E database is 16× 16.

We have noticed that the changes in EER and EUC are gradual in Table 2 and

Table 3 except a few exceptions. In Table 2, values of EER and EUC are gradually

increased. But if one observes Table 3, one finds that for τ = 0.6 and τ = 0.7, EER and

EUC are gradually decreased while for τ = 0.4 and τ = 0.5, EER and EUC are almost

consistent. Also for τ = 0.3, its behaviour is little abrupt because SURF matching

at low threshold is not very stable. It can be noted that UND-E data set is having
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illumination and contrast variations which cause the observations to be little abrupt.

But it is not the case with IITK data sets.

From Table 2(a), it can be seen that error values are almost same for τ = 0.7 and

for different tile sizes lying between 2 × 2 and 10 × 10 or that between 12 × 12 and

14 × 14 or that between 16 × 16 and 20 × 20. Thus, little change in the tile size does

not significantly change the error values.

5.2.2 Values of h and N in NLM Filters

In NLM filters, h is a scalar which controls the decay of the exponential function and

N is a scalar defining the neighborhood size (i.e., the size of the patches to be used

in the NLM algorithm). To search the optimal values, h and N are changed between

20 to 100 and 4 to 6 respectively. For each combination of (h, N), image enhancement

is performed and the enhanced image is used for recognition. The values of EER and

EUC of the system are computed and (h, N) values which correspond to minimum

EER is considered as optimal. EUC is used to break the tie in case of two or more

(h, N) pairs give same EER. Experiments are conducted to find EER and EUC for

IITK and UND-E databases which are shown in Table 4 and Table 5 respectively. It

is observed that the optimal values of (h, N) for IITK database Set 1 and Set 2 are

(100, 6) and (50, 6) respectively while for UND-E database it is (50, 6).

5.2.3 Values of σ and n in SF

In steerable filters, σ defines a vector of length l where l is the number of filter scales

and n is the angular resolution of filters. In our experiments, we have considered two

sets of σ: {0.5, 1, 1.5, 2, 2.5} and {0.1, 1, 2, 3, 4} while value of n is taken as 4 (i.e.,

θ = 0, π
4 , π

2 , 3π
4 ), 6 (i.e.,0, π

6 , π
3 , π

2 , 2π
3 , 5π

6 ) and 8 (i.e., 0, π
8 , π

4 , 3π
8 , π

2 , 5π
8 , 3π

4 , 7π
8 ). For

each combination of σ and n, image enhancement is performed and enhanced im-

age is used for recognition using SURF features and nearest neighbor classifier. The

values of EER and EUC of the system are computed and (σ, n) value which cor-

responds to minimum EER is considered as optimal. Experiments are conducted to

find EER and EUC for IITK and UND-E databases which are shown in Table 6. It

is observed from the table that the optimal values of parameters (σ, n) for SF are

({0.5, 1, 1.5, 2, 2.5}, 8) and ({0.1, 1, 2, 3, 4}, 8) for IITK database Set 1 and Set 2 respec-

tively while ({0.5, 1, 1.5, 2, 2.5}, 8) for UND-E database. Further, there are two values of

(σ, n) pair (i.e., ({0.1, 1, 2, 3, 4}, 6) and ({0.1, 1, 2, 3, 4}, 8)) in Table 6(b) for which EER

attains the minimum value. So to break the tie, EUC is used and ({0.1, 1, 2, 3, 4}, 8)

is chosen as the optimal parameter set as it has the minimum EUC value among the

two.

5.2.4 Value of τ for SURF Matching

Correctness of a match in SURF matching is determined by computing the ratio of

distance from the closest neighbor to the distance of the second closest neighbor. All

the matches in which the distance ratio is greater than τ are rejected. Experiments

are performed on IITK and UND-E databases by changing the value of τ from 0.3

to 0.7 with an increment of 0.1. This range of values is used in each of the experi-

ment conducted to determine the parameters of ADHist, NLM and SF filters. There
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Table 7 Optimal parameters for the proposed technique

Enhancement
Parameter

Databases
Technique IITK Set 1 IITK Set 2 UND-E

ADHist
Tile Size 8× 8 4× 4 16× 16

τ 0.4 0.4 0.6

NLM
h 100 50 50
N 6 6 6
τ 0.4 0.4 0.7

SF
σ {0.5, 1, 1.5, 2, 2.5} {0.1, 1, 2, 3, 4} {0.5, 1, 1.5, 2, 2.5}
n 8 8 8
τ 0.4 0.4 0.6

are 3 values of τ which are determined for each database, one for each enhancement

technique. Values of all the parameters discussed above are summarized in Table 7.

5.3 Results

Table 8 and Table 9 give the values of recognition accuracy (with corresponding FAR

and FRR), EER, EUC for IITK ear database for various combinations of enhancement

techniques. It can be observed that the best results are obtained when all three image

enhancement techniques are employed in the recognition process. ROC curves for Data

Set 1 and Data Set 2 are shown in Figure 5(a) and Figure 5(b) respectively. The ROC

curves obtained for the technique employing all three image enhancement techniques

is found to be superior to others.

Accuracy obtained in Table 9 is always greater than that shown in Table 8 except

for NLM. Greater accuracy in Table 9 is achieved due to the fact that in Data Set 2,

all the subjects are having 9 samples while in Data Set 1, number of samples varies

from 2 to 10 (almost 50% subjects have number of samples less than 4). This provides

better training in Data Set 2 compared to Data Set 1 which leads to better accuracy.

Table 10 gives the values of various performance measures for UND-E database for

various combinations of enhancement techniques. For this database also, it is noticed

that the best results are obtained when all three enhancement techniques are employed

in recognition process. From the table, it is observed that the best EER and EUC are

much less than those reported in two well known ear recognition techniques [20] and

[21]. Comparative performance of the proposed technique with the best known results

for UND-E database is summarized in Table 11. Results obtained by the proposed

technique are averaged over 30 experiments; hence it shows more stable performance

compared to the results reported in [20] and [21] where they are averaged only for 10

and 20 experiments respectively. ROC curves for UND-E database are shown in Figure

6 where the ROC curve employing all three image enhancement techniques is found to

be superior to others.

Score level fusion is performed by using weighted sum rule [18]. It is assumed that

independent use of classifiers C1, C2 and C3 for classification produces classification

accuracies A1, A2 and A3 respectively. In the proposed technique, these accuracies are

used to weight the scores of individual classifiers for fusion. The modified fusion score
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Table 8 Performance of the proposed technique on IITK Data Set 1 for various combinations
of enhancement techniques

Fusion Scheme Accuracy (FAR,FRR) EER EUC

ADHist 96.54(2.89,4.04) 3.46 1.42
NLM 97.10(3.07,2.72) 2.90 1.17
SF 96.68(2.92,3.72) 3.46 0.98
ADHist + NLM 97.25(2.83,2.67) 2.98 0.90
ADHist + SF 97.13(2.92,2.82) 3.09 0.80
NLM + SF 97.20(2.71,2.89) 2.94 0.83
ADHist + NLM + SF 97.35(2.70,2.60) 2.88 0.75

Table 9 Performance of the proposed technique on IITK Data Set 2 for various combinations
of enhancement techniques

Fusion Scheme Accuracy (FAR,FRR) EER EUC

ADHist 97.94(1.42,2.70) 2.25 1.03
NLM 96.55(2.10,4.79) 3.48 2.32
SF 96.85(1.70,4.61) 3.28 1.11
ADHist + NLM 98.17(1.49,2.17) 2.11 0.58
ADHist + SF 98.62(1.07,1.69) 1.68 0.40
NLM + SF 98.07(1.83,2.02) 2.26 0.48
ADHist + NLM + SF 98.79(0.88,1.54) 1.59 0.36

(a) Date Set 1 (b) Date Set 2

Fig. 5 ROC curves for IITK data sets showing the performance for various combinations of
enhancement techniques

is given as follows:

S =
A1 × S1 + A2 × S2 + A3 × S3

A1 + A2 + A3

where S1, S2, S3 are the individual scores produced by classifiers C1, C2 and C3

respectively. ROC curves, shown in Figure 5 and Figure 6, are drawn for the system

which use the weighted sum rule for fusion of matching scores obtained through three

classifiers.
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Table 10 Performance of the proposed technique on UND-E database for various combina-
tions of enhancement techniques

Fusion Scheme Accuracy (FAR,FRR) EER EUC

ADHist 93.64 (5.18,7.54) 6.72 2.40
NLM 95.25 (2.31,7.19) 5.75 1.40
SF 94.17 (3.31,8.36) 6.51 1.67
ADHist + NLM 96.13 (2.97,4.77) 4.40 1.34
ADHist + SF 95.41 (4.01,5.18) 5.06 1.49
NLM + SF 96.31 (2.85,4.53) 4.22 1.13
ADHist + NLM + SF 96.75 (2.58,3.92) 3.80 1.16

Table 11 Comparison of performance of the proposed technique with the latest reported
results for UND-E database

Technique
Accuracy

EER EUC
(FAR,FRR)

Proposed in [20] - 4.20 3.00a

Proposed in [21] - - 1.50
Proposed

96.75 (2.58,3.92) 3.80 1.13
Technique

a reported in [21] for the technique proposed in [20]

Fig. 6 ROC curves for UND-E database for combinations of various enhancement techniques

6 Conclusions

The available ear recognition techniques perform poor in presence of varying illumi-

nation, poor contrast, view point changes and non-registered images. This paper has

attempted to overcome these challenges and has presented a novel technique for ear

based human recognition. This technique uses three different image enhancement tech-

niques in parallel to overcome the effect of illumination and contrast and extracts local

features from the enhanced images using SURF. Use of SURF based local features
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helps in dealing with the problem of pose variation and poor image registration. Three

nearest neighbor classifiers are employed which are trained on the features obtained

from three different enhanced images respectively. Fusion at score level is carried out

to combine the scores generated from the three classifiers and decision is taken based

on the fused score. The proposed technique has been evaluated on two ear databases,

namely IIT Kanpur ear database and University of Notre Dame ear database (Collec-

tion E). IIT Kanpur ear database includes images of various rotations, sizes and shapes

while University of Notre Dame database consists of ear images with variable illumi-

nation, pose changes and poor contrast. Experimental results show that the proposed

technique provides a considerable improvement in terms of performance over existing

techniques.
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